Tensile‐Strained Cu Penetration Electrode Boosts Asymmetric C−C Coupling for Ampere‐Level CO2‐to‐C2+ Reduction in Acid

Author:

Li Shoujie12,Wu Gangfeng132,Mao Jianing345,Chen Aohui12,Liu Xiaohu12,Zeng Jianrong5,Wei Yiheng132,Wang Jiangjiang132,Zhu Huanyi132,Xia Jiayu132,Wang Xiaotong132,Li Guihua12,Song Yanfang132,Dong Xiao132,Wei Wei132,Chen Wei132ORCID

Affiliation:

1. Low-Carbon Conversion Science and Engineering Center Shanghai Advanced Research Institute Chinese Academy of Sciences 201210 Shanghai China

2. State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization Shanghai Advanced Research Institute Chinese Academy of Sciences 201210 Shanghai China

3. University of Chinese Academy of Sciences 100049 Beijing China

4. Shanghai Institute of Applied Physics Chinese Academy of Sciences 201204 Shanghai China

5. Shanghai Synchrotron Radiation Facility Shanghai Advanced Research Institute Chinese Academy of Sciences 201204 Shanghai China

Abstract

AbstractThe synthesis of multicarbon (C2+) products remains a substantial challenge in sustainable CO2 electroreduction owing to the need for sufficient current density and faradaic efficiency alongside carbon efficiency. Herein, we demonstrate ampere‐level high‐efficiency CO2 electroreduction to C2+ products in both neutral and strongly acidic (pH=1) electrolytes using a hierarchical Cu hollow‐fiber penetration electrode (HPE). High concentration of K+ could concurrently suppress hydrogen evolution reaction and facilitate C−C coupling, thereby promoting C2+ production in strong acid. By optimizing the K+ and H+ concentration and CO2 flow rate, a faradaic efficiency of 84.5 % and a partial current density as high as 3.1 A cm−2 for C2+ products, alongside a single‐pass carbon efficiency of 81.5 % and stable electrolysis for 240 h were demonstrated in a strong acidic solution of H2SO4 and KCl (pH=1). Experimental measurements and density functional theory simulations suggested that tensile‐strained Cu HPE enhances the asymmetric C−C coupling to steer the selectivity and activity of C2+ products.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3