Highly compact, free-standing porous electrodes from polymer-derived nanoporous carbons for efficient electrochemical capacitive deionization
Author:
Affiliation:
1. Department of Nanoengineering
2. University of California
3. San Diego
4. USA
5. Department of Civil and Environmental Engineering
6. Vanderbilt University
7. Nashville
8. Program of Materials Science and Engineering
Abstract
Highly compact, nanoporous electrodes fabricated by slip-roll compressing of polypyrrole-derived activated microporous carbon particles enable efficient electrochemical capacitive deionization.
Funder
University of California, San Diego
Vanderbilt University
Publisher
Royal Society of Chemistry (RSC)
Subject
General Materials Science,Renewable Energy, Sustainability and the Environment,General Chemistry
Link
http://pubs.rsc.org/en/content/articlepdf/2019/TA/C8TA10268F
Reference51 articles.
1. Science and technology for water purification in the coming decades
2. Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete?
3. Nanostructured materials for water desalination
4. Advances in seawater desalination technologies
5. Reverse osmosis desalination: Water sources, technology, and today's challenges
Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Carbon molecular sieve electrodes with intrinsic microporosity for efficient capacitive deionization;Separation and Purification Technology;2025-01
2. Investigation of capacitive deionization process parameters on salt adsorption capacity via experimental design approach;Physica Scripta;2024-07-25
3. Harnessing Holey MXene/Graphene Oxide Heterostructure to Maximize Ion Channels in Lamellar Film for High‐Performance Capacitive Deionization;Small;2024-07-17
4. High‐Density and Freestanding Porous Carbon Film for Compact Sodium‐Ion Storage;Batteries & Supercaps;2024-06-03
5. Synthesis of nitrogen-doped carbon nanoboxes with pore structure derived from zeolite and their excellent performance in capacitive deionization;Journal of Materials Chemistry A;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3