Harnessing Holey MXene/Graphene Oxide Heterostructure to Maximize Ion Channels in Lamellar Film for High‐Performance Capacitive Deionization

Author:

Zhang Hao12,Pang Bo2,Di Andi2,Chang Jian2,Héraly Frédéric2,Sikdar Anirban2,Pang Kanglei2,Guo Xin1,Li Jiansheng1ORCID,Yuan Jiayin2ORCID,Zhang Miao2ORCID

Affiliation:

1. Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse School of Environmental and Biological Engineering Nanjing University of Science and Technology Nanjing 210094 P. R. China

2. Department of Materials and Environmental Chemistry Stockholm University Stockholm 10691 Sweden

Abstract

Abstract2D Ti3C2Tx MXene‐based film electrodes with metallic conductivity and high pseudo‐capacitance are of considerable interest in cutting‐edge research of capacitive deionization (CDI). Further advancement in practical use is however impeded by their intrinsic limitations, e.g., tortuous ion diffusion pathway of layered stacking, vulnerable chemical stability, and swelling‐prone nature of hydrophilic MXene nanosheet in aqueous environment. Herein, a nanoporous 2D/2D heterostructure strategy is established to leverage both merits of holey MXene (HMX) and holey graphene oxide (HGO) nanosheets, which optimize ion transport shortcuts, alleviate common restacking issues, and improve film's mechanical and chemical stability. In this design, the nanosized in‐plane holes in both handpicked building blocks build up ion diffusion shortcuts in the composite laminates to accelerate the transport and storage of ions. As a direct outcome, the HMX/rHGO films exhibit remarkable desalination capacity of 57.91 mg g−1 and long‐term stability in 500 mg L−1 NaCl solution at 1.2 V. Moreover, molecular dynamics simulations and ex situ wide angle X‐ray scattering jointly demonstrate that the conductive 2D/2D networks and ultra‐short ion diffusion channels play critical roles in the ion intercalation/deintercalation process of HMX/rHGO films. The study paves an alternative design concept of freestanding CDI electrodes with superior ion transport efficiency.

Funder

National Natural Science Foundation of China

Vetenskapsrådet

China Scholarship Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3