Multivariate statistical analysis methods in QSAR
Author:
Affiliation:
1. Drug Design in Silico Lab.
2. Chemistry Faculty
3. K. N. Toosi University of Technology
4. Tehran
5. Iran
6. Department of Chemistry
7. University of Zabol
8. Zabol
Abstract
The emphasis of this review is particularly on multivariate statistical methods currently used in quantitative structure–activity relationship (QSAR) studies.
Publisher
Royal Society of Chemistry (RSC)
Subject
General Chemical Engineering,General Chemistry
Link
http://pubs.rsc.org/en/content/articlepdf/2015/RA/C5RA10729F
Reference223 articles.
1. Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs.
2. C. Hansch , A.Leo, D.Hoekman and A.Leo, Exploring Qsar, American Chemical Society, Washington, DC, 1995
3. Crossvalidation, Bootstrapping, and Partial Least Squares Compared with Multiple Regression in Conventional QSAR Studies
4. M. Karelson , Molecular descriptors in QSAR/QSPR, Wiley-Interscience, 2000
5. Binary Classification of Aqueous Solubility Using Support Vector Machines with Reduction and Recombination Feature Selection
Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Exploring innovative strategies for identifying anti-breast cancer compounds by integrating 2D/3D-QSAR, molecular docking analyses, ADMET predictions, molecular dynamics simulations, and MM-PBSA approaches;Journal of Molecular Structure;2025-01
2. Correlation analysis and modeling application from objective indicators to subjective evaluation of scented tea: A case study of rose tea;Food Chemistry;2025-01
3. Identification of new positron emission tomography (PET) imaging agents for the ghrelin receptor in disease through molecular modeling;Network Modeling Analysis in Health Informatics and Bioinformatics;2024-08-03
4. Predicting the amino group pKa of amino acids using machine learning-QSPR methods;Journal of Molecular Liquids;2024-08
5. Unleashing the potential of cheminformatic analysis for Mycobacterium tuberculosis inhibitors: Insights into chemical space and structural diversity;Hybrid Advances;2024-08
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3