Children's emergent mechanistic reasoning in chemistry: a case study about early primary students’ reasoning about the phenomenon of thermal expansion of air

Author:

Berg Astrid1ORCID,Hultén Magnus1ORCID

Affiliation:

1. Department of Behavioural Science and Learning, University of Linköping, Sweden

Abstract

The importance of introducing students to mechanistic reasoning (MR) early in their schooling is emphasised in research. The goal of this case study was to contribute with knowledge on how early primary students’ (9–10 year-olds) MR in chemistry is expressed and developed in a classroom practice framed by model-based inquiry. The study focuses on the first lesson in a sequence of six that was developed as part of a design study. The teaching was designed to ensure student agency and create conditions for the students to develop, test, and evaluate simple particle models in interaction with observations cooperatively and under teacher guidance. During the lesson, students were encouraged to express their tentative explanatory models in drawing and writing, and to act as molecules to dramatize the expansion of air. A mechanistic reasoning framework based on the characterisation of system components (entities, properties, activities, organisation) was developed and used to analyse children's mechanistic reasoning. The framework included multimodal analysis of communication (speech, gestures, writing, drawing, bodily motion) and evaluation of student reasoning based on e.g., the presence of gaps in terms of explanatory black boxes or missing pieces. The results show that: (1) In model-based inquiry, young children can navigate across different representational levels in their reasoning and engage in MR; (2) children's black-boxing can be seen as an indication of epistemic work in the process of model-based inquiry; and (3) asking students to engage in multiple modes of representations support the development of student MR in model-based inquiry.

Funder

Skolforskningsinstitutet

Publisher

Royal Society of Chemistry (RSC)

Subject

Education,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3