Molecular generation targeting desired electronic properties via deep generative models
Author:
Affiliation:
1. Department of Chemistry
2. Molecular Sciences Research Hub
3. White City Campus
4. Imperial College London
5. London
6. University College London
7. London WC1H 0AJ
8. UK
Abstract
A generative recurrent neural network (RNN) model was developed to target and explore the chemical space of electronic donor–acceptor oligomers effectively.
Funder
H2020 European Research Council
Engineering and Physical Sciences Research Council
Royal Society
Publisher
Royal Society of Chemistry (RSC)
Subject
General Materials Science
Link
http://pubs.rsc.org/en/content/articlepdf/2020/NR/C9NR10687A
Reference66 articles.
1. Generating Focused Molecule Libraries for Drug Discovery with Recurrent Neural Networks
2. Molecular de-novo design through deep reinforcement learning
3. Tuning artificial intelligence on the de novo design of natural-product-inspired retinoid X receptor modulators
4. Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules
5. Design Principles and Top Non-Fullerene Acceptor Candidates for Organic Photovoltaics
Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Generative Deep Learning-Based Efficient Design of Organic Molecules with Tailored Properties;ACS Central Science;2024-08-30
2. Inverse mapping of quantum properties to structures for chemical space of small organic molecules;Nature Communications;2024-07-18
3. De novo molecule design towards biased properties via a deep generative framework and iterative transfer learning;Digital Discovery;2024
4. An invertible, invariant crystal representation for inverse design of solid-state materials using generative deep learning;Nature Communications;2023-11-02
5. Porous Molecular Materials;AI‐Guided Design and Property Prediction for Zeolites and Nanoporous Materials;2023-01-24
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3