Predicting electronic structure properties of transition metal complexes with neural networks
Author:
Affiliation:
1. Department of Chemical Engineering
2. Massachusetts Institute of Technology
3. Cambridge
4. USA
Abstract
Our neural network predicts spin-state ordering of transition metal complexes to near-chemical accuracy with respect to DFT reference.
Funder
National Science Foundation
Burroughs Wellcome Fund
Publisher
Royal Society of Chemistry (RSC)
Subject
General Chemistry
Link
http://pubs.rsc.org/en/content/articlepdf/2017/SC/C7SC01247K
Reference114 articles.
1. Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach
2. Learning from the Harvard Clean Energy Project: The Use of Neural Networks to Accelerate Materials Discovery
3. The Catalyst Genome
4. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
5. Stochastic Voyages into Uncharted Chemical Space Produce a Representative Library of All Possible Drug-Like Compounds
Cited by 149 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Symbolic transform optimized convolutional neural network model for high-performance prediction and analysis of MXenes hydrogen evolution reaction catalysts;International Journal of Hydrogen Energy;2024-10
2. Understanding the Photoprocesses in Biological Systems: Need for Accurate Multireference Treatment;Journal of Chemical Theory and Computation;2024-06-12
3. Machine Learning-Enhanced Quantum Chemistry-Assisted Refinement of the Active Site Structure of Metalloproteins;Inorganic Chemistry;2024-05-28
4. In Silico Chemical Experiments in the Age of AI: From Quantum Chemistry to Machine Learning and Back;Advanced Materials;2024-05-25
5. Learning Design Rules for Catalysts Through Computational Chemistry and Machine Learning;Exploring Chemical Concepts Through Theory and Computation;2024-05-17
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3