Direct visible light activation of a surface cysteine-engineered [NiFe]-hydrogenase by silver nanoclusters
Author:
Affiliation:
1. Inorganic Chemistry Laboratory
2. Department of Chemistry
3. University of Oxford
4. Oxford OX1 3QR
5. UK
6. Research Complex at Harwell
7. Rutherford Appleton Laboratory
8. Harwell Oxford
9. Department of Biochemistry
Abstract
Engineering a cysteine close to the distal [4Fe–4S] cluster of a [NiFe]-hydrogenase creates a specific target for Ag nanoclusters, the resulting ‘hard-wired’ enzyme catalyzing rapid hydrogen evolution by visible light.
Funder
Royal Society
Newton Fund
Biotechnology and Biological Sciences Research Council
Publisher
Royal Society of Chemistry (RSC)
Subject
Pollution,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment,Environmental Chemistry
Link
http://pubs.rsc.org/en/content/articlepdf/2018/EE/C8EE02361A
Reference49 articles.
1. Balancing electron transfer rate and driving force for efficient photocatalytic hydrogen production in CdSe/CdS nanorod–[NiFe] hydrogenase assemblies
2. Sunlight-Dependent Hydrogen Production by Photosensitizer/Hydrogenase Systems
3. Quantum confined colloidal nanorod heterostructures for solar-to-fuel conversion
4. Semiconducting materials for photoelectrochemical energy conversion
5. Visible-light driven heterojunction photocatalysts for water splitting – a critical review
Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Bioinspired photo-driven hydrogen evolution systems based on hydrogenases and their mimics;Sustainable Energy & Fuels;2024
2. Integration of Eosin Y to the Hydrogenase-Mediated Electron Transfer Pathway of Ralstonia Eutropha for Light-Driven Co2 Conversion to Acetoin;2024
3. Hydrogenase as the basis for green hydrogen production and utilization;Journal of Energy Chemistry;2023-10
4. Ultrafine sulfur–doped carbon nanoparticles enhanced the transmembrane bioelectricity of Clostridium butyricum for biohydrogen production;Nano Energy;2023-06
5. Aktivitätssteigerung von Hydrogenase zur photokatalytischen Wasserstofferzeugung an Luft mittels Lösemitteltuning;Angewandte Chemie;2023-03-27
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3