Morphology and ion diffusion in PEDOT:Tos. A coarse grained molecular dynamics simulation
Author:
Affiliation:
1. Laboratory of Organic Electronics
2. Department of Science and Technology
3. Linköping University
4. 60174 Norrköping
5. Sweden
Abstract
A Martini coarse-grained Molecular Dynamics (MD) model for the doped conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) is developed. It is shown that the diffusion coefficients decrease exponentially as the hydration level is reduced.
Funder
Knut och Alice Wallenbergs Stiftelse
Vetenskapsrådet
Linköpings Universitet
Publisher
Royal Society of Chemistry (RSC)
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy
Link
http://pubs.rsc.org/en/content/articlepdf/2018/CP/C8CP02902D
Reference89 articles.
1. Vapor-Phase Polymerization of 3,4-Ethylenedioxythiophene: A Route to Highly Conducting Polymer Surface Layers
2. Acido-basic control of the thermoelectric properties of poly(3,4-ethylenedioxythiophene)tosylate (PEDOT-Tos) thin films
3. Highly electrically conductive polyethylenedioxythiophene thin films for thermoelectric applications
4. Highly Ordered Nanoconfinement Effect from Evaporation-Induced Self-Assembly of Block Copolymers on In Situ Polymerized PEDOT:Tos
5. Ionic Seebeck Effect in Conducting Polymers
Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Understanding the ion conductivity of self-standing poly-[ethylene oxide] composite films through non fickian diffusion mediated water uptake phenomena;Journal of Polymer Research;2024-08-29
2. An Electronic Structure Investigation of PEDOT with AlCl4− Anions—A Promising Redox Combination for Energy Storage Applications;Polymers;2024-05-11
3. Thermodynamic Mechanism Governing the Coalescence of Conductive Particles in PEDOT:PSS under Laser Irradiation;Macromolecules;2024-02-21
4. Organic mixed conductors for bioinspired electronics;Nature Reviews Materials;2023-12-22
5. Mixed Ionic-Electronic Transport for PEDOT:PSS-Based Zero-Gated Organic Electrochemical Transistors Using Impedance Spectroscopy and Micro-Raman Imaging;ACS Applied Electronic Materials;2023-08-24
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3