An Electronic Structure Investigation of PEDOT with AlCl4− Anions—A Promising Redox Combination for Energy Storage Applications

Author:

Craig Ben1ORCID,Townsend Peter2,de Leon Carlos Ponce1,Skylaris Chris-Kriton3,Kramer Denis4ORCID

Affiliation:

1. School of Engineering, University of Southampton, University Road, Southampton SO17 1BJ, UK

2. Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Rd., Piscataway, NJ 08854, USA

3. School of Chemistry, University of Southampton, University Road, Southampton SO17 1BJ, UK

4. Faculty of Mechanical Engineering, Helmut-Schmidt-University, Holstenhofweg 85, 22043 Hamburg, Germany

Abstract

In this work, we use density functional theory to investigate the electronic structure of poly(3,4-ethylenedioxythiophene) (PEDOT) oligomers with co-located AlCl4− anions, a promising combination for energy storage. The 1980s bipolaron model remains the dominant interpretation of the electronic structure of PEDOT despite recent theoretical progress that has provided new definitions of bipolarons and polarons. By considering the influence of oligomer length, oxidation or anion concentration and spin state, we find no evidence for many of the assertions of the 1980s bipolaron model and so further contribute to a new understanding. No self-localisation of positive charges in PEDOT is found, as predicted by the bipolaron model at the hybrid functional level. Instead, our results show distortions that exhibit a single or a double peak in bond length alternations and charge density. Either can occur at different oxidation or anion concentrations. Rather than representing bipolarons or polaron pairs in the original model, these are electron distributions driven by a range of factors. Distortions can span an arbitrary number of nearby anions. We also contribute a novel conductivity hypothesis. Conductivity in conducting polymers has been observed to reduce at anion concentrations above 0.5. We show that at high anion concentrations, the energy of the localised, non-bonding anionic orbitals approaches that of the system HOMO due to Coulombic repulsion between anions. We hypothesize that with nucleic motion in the macropolymer, these orbitals will interfere with the hopping of charge carriers between sites of similar energy, lowering conductivity.

Funder

Lloyd’s Register Foundation

Centre for Doctoral Training in Energy Storage and its Applications at the University of Southampton

EPSRC

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3