Synthesis, characterization, and antitumor properties of Au(i)–thiourea complexes

Author:

Yu Bingqiong12ORCID,Liu Yanhong2,Peng Xian2,Hua Siyu2,Zhou Gangcheng2,Yan Kun2,Liu Yi234ORCID

Affiliation:

1. Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, P. R. China

2. Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE) College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China

3. College of Chemistry and Material Sciences, Nanning Normal University, Nanning 530001, P. R. China

4. Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China

Abstract

Abstract The anticancer property of cisplatin has stimulated the development of metal complexes as antitumor agents. Among these complexes, metal thiourea complexes have attracted sufficient attention, and they possess the potential possibility to become new antitumor metallodrugs. Herein, four Au(i) complexes derived from N,N-disubstituted cyclic thiourea ligands were synthesized and characterized. The crystal structure analysis indicated that the complex Au(i)(3c)2OTf was a mononuclear crystal structure with Au(i) coordinated by two sulfur atoms. These Au(i) complexes exhibited excellent toxicities against several tumor cell lines, especially complex Au(i)(3c)2OTf (IC50 = 8.06 μM against HeLa). It was found that Au(i)(3c)2OTf triggered a burst of ROS, disrupted the mitochondrial membrane potential (MMP), subsequently released Cyt-c, and then triggered the activation of caspase 9, caspase 7 and caspase 3. Mechanism experiments manifested that Au(i)(3c)2OTf induced the down-regulation of Bcl-2 and up-regulation of Bax, which further indicated that Au(i)(3c)2OTf triggered mitochondria-mediated apoptosis. In addition, the ROS scavenger-NAC completely blocked the apoptosis and inhibited the reduction of MMP, showing that Au(i)(3c)2OTf induced a ROS-dependent apoptosis pathway. These results indicate that Au(i)(3c)2OTf is worthy of in-depth research as an antitumor agent and may throw light on a better understanding of the effect of thiourea derivatives on antitumor mechanisms.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hubei Province

Wuhan University

Publisher

Oxford University Press (OUP)

Subject

Metals and Alloys,Biochemistry,Biomaterials,Biophysics,Chemistry (miscellaneous)

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3