Enhanced planar perovskite solar cells with efficiency exceeding 16% via reducing the oxygen vacancy defect state in titanium oxide electrode
Author:
Affiliation:
1. College of Electronic Information and Optical Engineering
2. Nankai University
3. Key Laboratory of Opto-electronic Information Science and Technology for Ministry of Education
4. Tianjin
5. China
Abstract
In this work, the influence of oxygen vacancy defect (OVD) in compact titanium oxide (c-TiO2) on the performance of planar perovskite solar cells (p-PSCs) is investigated, and the possible mechanisms are also proposed.
Funder
Natural Science Foundation of Tianjin City
Publisher
Royal Society of Chemistry (RSC)
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy
Link
http://pubs.rsc.org/en/content/articlepdf/2017/CP/C7CP01936J
Reference33 articles.
1. Sequential deposition as a route to high-performance perovskite-sensitized solar cells
2. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers
3. High efficiency flexible perovskite solar cells using superior low temperature TiO2
4. Novel Combination of Efficient Perovskite Solar Cells with Low Temperature Processed Compact TiO2 Layer via Anodic Oxidation
Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Improving the efficiency and stability of screen-printed carbon-based perovskite solar cells through passivation of electron transport compact-TiO2 layer with TiCl4;Optical and Quantum Electronics;2024-08-21
2. Defect Engineering at Buried Interface of Perovskite Solar Cells;Small Methods;2024-06-21
3. Tunable structure of TiO2 deposited by DC magnetron sputtering to adsorb Cr (VI) and Fe (III) from water;Heliyon;2024-03
4. Ferroelectric Controlled Interfacial Effect on the Electronic Properties of PZT Gated IGZO Channel Thin-Film Transistors;ACS Applied Electronic Materials;2024-01-13
5. Recent advances in elemental doping and simulation techniques: improving structural, photophysical and electronic properties of titanium dioxide;Journal of Materials Chemistry C;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3