Machine learning enables long time scale molecular photodynamics simulations
Author:
Affiliation:
1. Institute of Theoretical Chemistry
2. Faculty of Chemistry
3. University of Vienna
4. 1090 Vienna
5. Austria
6. Machine Learning Group
7. Technical University of Berlin
8. 10587 Berlin
9. Germany
Abstract
Machine learning enables excited-state molecular dynamics simulations including nonadiabatic couplings on nanosecond time scales.
Funder
H2020 Marie Skłodowska-Curie Actions
Austrian Science Fund
Universität Wien
Publisher
Royal Society of Chemistry (RSC)
Subject
General Chemistry
Link
http://pubs.rsc.org/en/content/articlepdf/2019/SC/C9SC01742A
Reference75 articles.
1. I. Goodfellow , Y.Bengio and A.Courville , Deep Learning , MIT Press , 2016
2. Mastering the game of Go with deep neural networks and tree search
3. Improving refugee integration through data-driven algorithmic assignment
4. Inverse molecular design using machine learning: Generative models for matter engineering
5. Machine learning for molecular and materials science
Cited by 152 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Unsupervised Machine Learning in the Analysis of Nonadiabatic Molecular Dynamics Simulation;The Journal of Physical Chemistry Letters;2024-09-13
2. A Euclidean transformer for fast and stable machine learned force fields;Nature Communications;2024-08-06
3. Machine Learning Approach to Vertical Energy Gap in Redox Processes;Journal of Chemical Theory and Computation;2024-07-24
4. Construction of Highly Accurate Machine Learning Potential Energy Surfaces for Excited-State Dynamics Simulations Based on Low-Level Data Sets;The Journal of Physical Chemistry A;2024-07-02
5. Machine learning photodynamics uncover blocked non-radiative mechanisms in aggregation-induced emission;Chem;2024-07
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3