Improving refugee integration through data-driven algorithmic assignment

Author:

Bansak Kirk12ORCID,Ferwerda Jeremy23,Hainmueller Jens124ORCID,Dillon Andrea2ORCID,Hangartner Dominik256ORCID,Lawrence Duncan2ORCID,Weinstein Jeremy12ORCID

Affiliation:

1. Department of Political Science, Stanford University, Stanford, CA 94305, USA.

2. Immigration Policy Lab, Stanford University, Stanford, CA 94305, USA, and ETH Zurich, 8092 Zurich, Switzerland.

3. Department of Government, Dartmouth College, Hanover, NH 03755, USA.

4. Graduate School of Business, Stanford University, Stanford, CA 94305, USA.

5. Center for Comparative and International Studies, ETH Zurich, 8092 Zurich, Switzerland.

6. Department of Government, London School of Economics and Political Science, London WC2A 2AE, UK.

Abstract

Data-driven refugee assignment The continuing refugee crisis has made it necessary for governments to find ways to resettle individuals and families in host communities. Bansak et al. used a machine learning approach to develop an algorithm for geographically placing refugees to optimize their overall employment rate. The authors developed and tested the algorithm on segments of registry data from the United States and Switzerland. The algorithm improved the employment prospects of refugees in the United States by ∼40% and in Switzerland by ∼75%. Science , this issue p. 325

Funder

Ford Foundation

Carnegie Corporation of New York

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 177 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3