Is an electric field always a promoter of wetting? Electro-dewetting of metals by electrolytes probed by in situ X-ray nanotomography
Author:
Affiliation:
1. Department of Materials Science and Engineering
2. Clemson University
3. Clemson
4. USA
5. Photon Sciences Directorate
6. Brookhaven National Laboratory
7. Upton
Abstract
We developed a special electrochemical cell enabling quantitative analysis and in situ X-ray nanotomography of metal/electrolyte interfaces subject to corrosion. Using this cell and applying the nodoid model to describe menisci formed on tungsten wires during anodization, the evolution of the electrolyte surface tension, the concentration of reaction products, and the meniscus contact angle were studied. In contrast to the electrowetting effect, where the applied electric field decreases the contact angle of electrolytes, anodization of the tungsten wires increases the contact angle of the meniscus. Hence, an electric field favors dewetting rather than wetting of the newly formed surface. The discovered effect opens up new opportunities for the control of wetting phenomena and calls for the revision of existing theories of electrowetting.
Publisher
Royal Society of Chemistry (RSC)
Subject
Physical and Theoretical Chemistry
Link
http://pubs.rsc.org/en/content/articlepdf/2017/FD/C6FD00239K
Reference38 articles.
1. Electrochemical micromachining, polishing and surface structuring of metals: fundamental aspects and new developments
2. Conductive nichrome probe tips: fabrication, characterization and application as nanotools
3. Electrochemically etched nickel tips for spin polarized scanning tunneling microscopy
4. Fabrication of gold tips suitable for tip-enhanced Raman spectroscopy
5. Fabrication of silver tips for scanning tunneling microscope induced luminescence
Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. The renaissance of electrowetting;Current Opinion in Electrochemistry;2023-04
2. Making droplets from highly viscous liquids by pushing a wire through a tube;Physics of Fluids;2022-03
3. Ionic-surfactant-mediated electro-dewetting for digital microfluidics;Nature;2019-08-21
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3