Affiliation:
1. Department of Materials Science and Engineering, Clemson University, 515 Calhoun Drive, 161 Sirrine Hall, Clemson, South Carolina 29634, USA
Abstract
Drop-on-demand (DOD) printing is a versatile manufacturing tool, which has been widely used in applications ranging from graphic products to manufacturing of ceramics, even for cell engineering. However, the existing DOD methods cannot be applied for highly viscous materials: the printing technologies are typically limited to the inks with the water level viscosity and fall short to eject jets from thick fluids and break them into droplets. To address this challenge, a new wire-in-a-tube technology for drop generation has been developed replacing the nozzle generator with a wire-in-a-tube drop generator. We successfully formed droplets on demand from highly viscous (∼10 Pa s) liquids and studied the mechanisms of drop formation in the wire-in-a-tube drop generators. These mechanisms couple unique fluid mechanics, capillarity, and wetting phenomena providing a new platform that can be used in different microfluidic applications.
Funder
Directorate for Engineering
Subject
Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献