Sulfide bornite thermoelectric material: a natural mineral with ultralow thermal conductivity
Author:
Affiliation:
1. State Key Laboratory of High Performance Ceramics and Superfine Microstructure
2. Shanghai Institute of Ceramics
3. Chinese Academy of Sciences
4. Shanghai 200050, China
5. CAS Key Laboratory of Materials for Energy Conversion
6. Shanghai, China
Abstract
The natural mineral bornite that has ultralow thermal conductivity exhibits excellent thermoelectric performance and enhanced stability under large electric currents.
Publisher
Royal Society of Chemistry (RSC)
Subject
Pollution,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment,Environmental Chemistry
Link
http://pubs.rsc.org/en/content/articlepdf/2014/EE/C4EE02428A
Reference43 articles.
1. A. F. Ioffe , Semiconductor Thermoelements and Thermoelectric Cooling , London , 1957
2. Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems
3. G. A. Slack , CRC Handbook of Thermoelectrics , CRC press , Boca Raton , 1995
4. High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys
5. Convergence of electronic bands for high performance bulk thermoelectrics
Cited by 202 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Colloidal synthetic environmental design towards high-density twin boundaries and boosted thermoelectric performance in Cu5FeS4 icosahedrons;Nano Energy;2024-12
2. Process optimization on kesterite-based ceramics for enhancing their thermoelectric performances assisted by active machine learning approach: A tool for metal-sulfide ceramics development;Acta Materialia;2024-12
3. Facile surfactant-free microwave-assisted solvothermal synthesis of Cu2Te1−S with enhanced thermoelectric performance;Journal of the European Ceramic Society;2024-09
4. Phase Transitions and Thermoelectric Properties of Charge-Compensated ZnxCu12−xSb4Se13;Materials;2024-07-03
5. Anharmonic Phonon Vibrations of Ag and Cu for Poor Lattice Thermal Conductivity in Superionic AgCrSe2 and CuCrSe2;ACS Applied Energy Materials;2024-07-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3