Predicting protein lysine phosphoglycerylation sites by hybridizing many sequence based features

Author:

Chen Qing-Yun1234,Tang Jijun12345,Du Pu-Feng1234ORCID

Affiliation:

1. School of Computer Science and Technology

2. Tianjin University

3. Tianjin 300350

4. China

5. School of Computational Science and Engineering

Abstract

PhoglyPred is an algorithm that can computationally predict protein phosphoglycerylation sites using three different kinds of descriptors.

Publisher

Royal Society of Chemistry (RSC)

Subject

Molecular Biology,Biotechnology

Reference46 articles.

1. D. Voet , J. G.Voet and C. W.Pratt, Fundamentals of Biochemistry: Life at the Molecular Level, Wiley, 2013

2. SUMO wrestling with type 1 diabetes

3. J.-S. Seeler , O.Bischof, K.Nacerddine and A.Dejean, in Acute Promyelocytic Leukemia: Molecular Genetics, Mouse Models and Targeted Therapy, ed. P. P. Pandolfi and P. K. Vogt, Springer Berlin Heidelberg, 2007, pp. 49–71

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Predicting Phosphoglycerylation with Transformer Features and Deep Learning;2023 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE);2023-12-04

2. KPhogly-RAM:Prediction of Phosphoglycerylation Sites Using Residue Adjacency Matrix;2022 IEEE International Women in Engineering (WIE) Conference on Electrical and Computer Engineering (WIECON-ECE);2022-12-30

3. PLP_FS: prediction of lysine phosphoglycerylation sites in protein using support vector machine and fusion of multiple F_Score feature selection;Briefings in Bioinformatics;2022-08-04

4. Maximizing Depth of PTM Coverage: Generating Robust MS Datasets for Computational Prediction Modeling;Methods in Molecular Biology;2022

5. ECM-LSE: Prediction of Extracellular Matrix Proteins Using Deep Latent Space Encoding of k-Spaced Amino Acid Pairs;Frontiers in Bioengineering and Biotechnology;2021-10-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3