PLP_FS: prediction of lysine phosphoglycerylation sites in protein using support vector machine and fusion of multiple F_Score feature selection

Author:

Sohrawordi Md12ORCID,Hossain Md Ali1,Hasan Md Al Mehedi1

Affiliation:

1. Dept. of Computer Science and Engineering, Rajshahi University of Engineering and Technology , Rajshahi, Bangladesh

2. Dept. of Computer Science and Engineering, Hajee Mohammad Danesh Science and Technology University , Dinajpur, Bangladesh

Abstract

Abstract A newly invented post-translational modification (PTM), phosphoglycerylation, has shown its essential role in the construction and functional properties of proteins and dangerous human diseases. Hence, it is very urgent to know about the molecular mechanism behind the phosphoglycerylation process to develop the drugs for related diseases. But accurately identifying of phosphoglycerylation site from a protein sequence in a laboratory is a very difficult and challenging task. Hence, the construction of an efficient computation model is greatly sought for this purpose. A little number of computational models are currently available for identifying the phosphoglycerylation sites, which are not able to reach their prediction capability at a satisfactory level. Therefore, an effective predictor named PLP_FS has been designed and constructed to identify phosphoglycerylation sites in this study. For the training purpose, an optimal number of feature sets was obtained by fusion of multiple F_Score feature selection techniques from the features generated by three types of sequence-based feature extraction methods and fitted with the support vector machine classification technique to the prediction model. On the other hand, the k-neighbor near cleaning and SMOTE methods were also implemented to balance the benchmark dataset. The suggested model in 10-fold cross-validation obtained an accuracy of 99.22%, a sensitivity of 98.17% and a specificity of 99.75% according to the experimental findings, which are better than other currently available predictors for accurately identifying the phosphoglycerylation sites.

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Reference48 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3