Lifetime elongation of quantum-dot light-emitting diodes by inhibiting the degradation of hole transport layer
Author:
Affiliation:
1. Department of Electrical Engineering
2. Yuan Ze University
3. Taoyuan 32003
4. Taiwan
5. Graduate Institute of Photonics and Optoelectronics
6. National Taiwan University
7. Taipei 10617
8. AU Optronics Corporation
9. Hsinchu 30010
Abstract
Developing a colloidal quantum-dot light-emitting device (QDLED) with an enhancement on efficiency and reliability by inhibiting HTL degradation.
Funder
H2020 Marie Skłodowska-Curie Actions
Ministry of Science and Technology, Taiwan
Publisher
Royal Society of Chemistry (RSC)
Subject
General Chemical Engineering,General Chemistry
Link
http://pubs.rsc.org/en/content/articlepdf/2021/RA/D1RA03310G
Reference45 articles.
1. Correlation between the Morphology of ZnO Layers and the Electroluminescence of Quantum Dot Light-Emitting Diodes
2. P‐120: Degradation Mechanism and Lifetime Improvement of Blue Quantum‐Dot Light‐Emitting Diodes
3. Efficient near-infrared light-emitting diodes based on quantum dots in layered perovskite
4. Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination
5. Highly efficient white electroluminescent devices with hybrid double emitting layers of quantum dots and phosphorescent molecules
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Differences in Electron and Hole Injection and Auger Recombination between Red, Green, and Blue CdSe-Based Quantum Dot Light Emitting Devices;ACS Nano;2024-01-04
2. Colloidal quantum dots for displays;Reference Module in Materials Science and Materials Engineering;2024
3. Review: Quantum Dot Light-Emitting Diodes;Chemical Reviews;2023-02-16
4. Significant Lifetime Enhancement in QLEDs by Reducing Interfacial Charge Accumulation via Fluorine Incorporation in the ZnO Electron Transport Layer;Nano-Micro Letters;2022-11-04
5. Stability Improvement in Quantum-Dot Light-Emitting Devices via a New Robust Hole Transport Layer;The Journal of Physical Chemistry C;2022-10-13
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3