Charge carrier loss mechanisms in CuInS2/ZnO nanocrystal solar cells
Author:
Affiliation:
1. Energy and Semiconductor Research Laboratory
2. Department of Physics
3. University of Oldenburg
4. 26129 Oldenburg
5. Germany
Abstract
The charge carrier loss mechanisms in solution-processed CuInS2/ZnO nanocrystal solar cells are studied using steady-state and transient techniques. The results represent a step forward in understanding the device physics of copper-based nanocrystal photovoltaics.
Publisher
Royal Society of Chemistry (RSC)
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy
Link
http://pubs.rsc.org/en/content/articlepdf/2016/CP/C6CP01015F
Reference64 articles.
1. Air-Stable All-Inorganic Nanocrystal Solar Cells Processed from Solution
2. Depleted-Heterojunction Colloidal Quantum Dot Solar Cells
3. Improved performance and stability in quantum dot solar cells through band alignment engineering
4. Colloidal Quantum Dot Solar Cells Exploiting Hierarchical Structuring
5. High-Efficiency Colloidal Quantum Dot Photovoltaics via Robust Self-Assembled Monolayers
Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Preparation and Structural Characterization of Thin Films of CuInS2 by Sintering Colloidally Synthesized Nanoparticles at Moderate Temperature;physica status solidi (a);2023-08-02
2. Improving Organic Photovoltaic Efficiency via Heterophase Homojunction Copper Indium Sulfide Nanocrystals;Solar RRL;2023-06-22
3. Ternary heterogeneous Z-scheme photocatalyst TiO2/CuInS2/OCN incorporated with carbon quantum dots (CQDs) for enhanced photocatalytic degradation efficiency of reactive yellow 145 dye in water;RSC Advances;2023
4. Spectroscopic and Morpho-Structural Characterization of Copper Indium Disulfide–Zinc Oxide Nanocomposites with Photocatalytic Properties;Analytical Letters;2022-03-01
5. Zinc oxide/graphene nanocomposite as efficient photoelectrode in dye‐sensitized solar cells: Recent advances and future outlook;International Journal of Energy Research;2022-02-02
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3