Preparation and Structural Characterization of Thin Films of CuInS2 by Sintering Colloidally Synthesized Nanoparticles at Moderate Temperature

Author:

Reinhold Harald1,Mikolajczak Ulf1,Borchert Holger1,Parisi Jürgen1,Scheunemann Dorothea1ORCID

Affiliation:

1. Department of Physics University of Oldenburg 26111 Oldenburg Germany

Abstract

Copper indium disulfide nanoparticles continue attracting attention as absorber material in light harvesting devices. The preparation of thin films by deposition of this material from colloidal solution remains challenging. Typically, colloidal semiconductor nanoparticles are surrounded by long organic ligand molecules which are required to stabilize the particles during synthesis. A common way to obtain conductive thin films is the development of ligand exchange procedures that need to be applied prior to film deposition. However, in the case of copper indium disulfide nanoparticles, appropriate procedures are still missing. Therefore, an alternative approach is investigated herein. Colloidal copper indium disulfide nanoparticles are synthesized and deposited on substrates. Instead of applying a ligand exchange procedure, thermal removal of the ligands and sintering of the inorganic film are explored. Results on the preparation of the nanoparticle films, their structural investigation, and conductivity measurements are reported.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Materials Chemistry,Electrical and Electronic Engineering,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3