Resolving the complexity of organic chemistry students' reasoning through the lens of a mechanistic framework

Author:

Caspari I.1234ORCID,Kranz D.1234ORCID,Graulich N.1234ORCID

Affiliation:

1. Justus-Liebig-University Giessen

2. Institute of Chemistry Education

3. 35392 Giessen

4. Germany

Abstract

Research in organic chemistry education has revealed that students often rely on rote memorization when learning mechanisms. Not much is known about student productive resources for causal reasoning. To investigate incipient stages of student causal reasoning about single mechanistic steps of organic reactions, we developed a theoretical framework for this type of mechanistic reasoning. Inspired by mechanistic approaches from philosophy of science, primarily philosophy of organic chemistry, the framework divides reasoning about mechanisms into structural and energetic accounts as well as static and dynamic approaches to change. In qualitative interviews, undergraduate organic chemistry students were asked to think aloud about the relative activation energies of contrasting cases,i.e.two different reactants undergoing a leaving group departure step. The analysis of students’ reasoning demonstrated the applicability of the framework and expanded the framework by different levels of complexity of relations that students constructed between differences of the molecules and changes that occur in a leaving group departure. We further analyzed how students’ certainty about the relevance of their reasoning for a claim about activation energy corresponded to their static and dynamic approaches to change and how students’ success corresponded to the complexity of relations that they constructed. Our findings support the necessity for clear communication of and stronger emphasis on the fundamental basis of elementary steps in organic chemistry. Implications for teaching the structure of mechanistic reasoning in organic chemistry and for the design of mechanism tasks are discussed.

Publisher

Royal Society of Chemistry (RSC)

Subject

Education,Chemistry (miscellaneous)

Reference56 articles.

1. Airey J. and Linder C., (2009), A Disciplinary Discourse Perspective on University Science Learning: Achieving Fluency in a Critical Constellation of Modes, J. Res. Sci. Teach. , 46 , 27–49

2. Alfieri L., Nokes-Malach T. J. and Schunn C. D., (2013), Learning Through Case Comparisons: A Meta-Analytic Review, Educ. Psychol. , 48 , 87–113

3. Anzovino M. E. and Bretz S. L., (2015), Organic chemistry students' ideas about nucleophiles and electrophiles: the role of charges and mechanisms, Chem. Educ. Res. Pract. , 16 , 797–810

4. Anzovino M. E. and Bretz S. L., (2016), Organic chemistry students' fragmented ideas about the structure and function of nucleophiles and electrophiles: a concept map analysis, Chem. Educ. Res. Pract. , 17 , 1019–1029

5. Bechtel W. and Abrahamsen A., (2005), Explanation: a mechanist alternative, Stud. Hist. Philos. Biol. Biomed. Sci. , 36 , 421–441

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3