Towards autonomous high-throughput multiscale modelling of battery interfaces

Author:

Deng Zeyu1ORCID,Kumar Vipin2,Bölle Felix T.3ORCID,Caro Fernando45,Franco Alejandro A.4567ORCID,Castelli Ivano E.3ORCID,Canepa Pieremanuele18ORCID,Seh Zhi Wei9ORCID

Affiliation:

1. Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, 117575, Singapore

2. Department of Energy Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, Delhi 110016, India

3. Department of Energy Conversion and Storage, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark

4. Laboratoire de Réactivité et Chimie des Solides (LRCS), UMR CNRS 7314, Université de Picardie Jules Verne, Hub de l’Energie, 15 Rue Baudelocque, Amiens Cedex 80039, France

5. Réseau sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS 3459, Hub de l’Energie, 15, rue Baudelocque, Amiens Cedex 80039, France

6. ALISTORE-European Research Institute, FR CNRS 3104, Hub de l’Energie, 15, rue Baudelocque, Amiens Cedex 80039, France

7. Institut Universitaire de France, 103 Boulevard Saint Michel, Paris 75005, France

8. Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore

9. Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis 138634, Singapore

Abstract

Understanding of interfaces in rechargeable batteries is crucial because they bridge electrodes, electrolytes, and current collectors. Current challenges that need to be overcome are reviewed, followed by future directions to reach this goal.

Funder

Agence Nationale de la Recherche

Det Frie Forskningsråd

National Research Foundation Singapore

H2020 European Research Council

Horizon 2020 Framework Programme

Publisher

Royal Society of Chemistry (RSC)

Subject

Pollution,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3