Effects of Grain Boundaries and Surfaces on Electronic and Mechanical Properties of Solid Electrolytes

Author:

Xie Weihang1ORCID,Deng Zeyu1ORCID,Liu Zhengyu1,Famprikis Theodosios2ORCID,Butler Keith T.3ORCID,Canepa Pieremanuele14ORCID

Affiliation:

1. Department of Materials Science and Engineering National University of Singapore 9 Engineering Drive 1 Singapore 117575 Singapore

2. Faculty of Applied Sciences Delft University of Technology Delft 2628 The Netherlands

3. Department of Chemistry University College London Gower Place London WC1E 6BT UK

4. Department of Electrical and Computer Engineering University of Houston Houston TX 77204 USA

Abstract

AbstractExtended defects, including exposed surfaces and grain boundaries (GBs), are critical to the properties of polycrystalline solid electrolytes in all‐solid‐state batteries (ASSBs). These defects can alter the mechanical and electronic properties of solid electrolytes, with direct manifestations in the performance of ASSBs. Here, by building a library of 590 surfaces and grain boundaries of 11 relevant solid electrolytes—including halides, oxides, and sulfides— their electronic, mechanical, and thermodynamic characteristics are linked to the functional properties of polycrystalline solid electrolytes. It is found that the energy required to mechanically “separate” grain boundaries can be significantly lower than in the bulk region of materials, which can trigger preferential cracking of solid electrolyte particles in the grain boundary regions. The brittleness of ceramic solid electrolytes, inferred from the predicted low fracture toughness at the grain boundaries, contributes to their cracking under local pressure imparted by lithium (sodium) penetration in the grain boundaries. Extended defects of solid electrolytes introduce new electronic interfacial states within bandgaps of solid electrolytes. These states alter and possibly increase locally the availability of free electrons and holes in solid electrolytes. Factoring effects arising from extended defects appear crucial to explain electrochemical and mechanical observations in ASSBs.

Funder

National Research Foundation Singapore

National Supercomputing Centre Singapore

College of Design and Engineering, National University of Singapore

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3