Preferential interactions of primary amine-terminated quantum dots with membrane domain boundaries and lipid rafts revealed with nanometer resolution
Author:
Affiliation:
1. Environmental Molecular Sciences Laboratory
2. Pacific Northwest National Laboratory
3. Richland
4. USA
5. Department of Chemistry
6. University of Wisconsin
7. Madison
8. Departments of Soil Science, and Civil & Environmental Engineering
Abstract
Primary amine-terminated Qdots preferentially interact with liquid-ordered domain boundaries in bilayers and with lipid rafts in intact cells.
Funder
National Science Foundation
Wisconsin Alumni Research Foundation
Publisher
Royal Society of Chemistry (RSC)
Subject
General Environmental Science,Materials Science (miscellaneous)
Link
http://pubs.rsc.org/en/content/articlepdf/2020/EN/C9EN00996E
Reference63 articles.
1. Nanomaterials and Global Sustainability
2. Toxic Potential of Materials at the Nanolevel
3. Biological Responses to Engineered Nanomaterials: Needs for the Next Decade
4. Physicochemical Properties Determine Nanomaterial Cellular Uptake, Transport, and Fate
5. Cellular uptake of nanoparticles: journey inside the cell
Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Spontaneous unbinding transition of nanoparticles adsorbing onto biomembranes: interplay of electrostatics and crowding;Nanoscale;2024
2. Interaction of supported phospholipid bilayers with diamond nanoparticles non-covalently functionalized with a cationic polyelectrolyte;Environmental Science: Nano;2024
3. Continuous-time binding kinetics of graphene oxide quantum dots and lipid bilayers dominated by hydrogen bonding: effect of nanoparticles' protein corona and membrane components;Environmental Science: Nano;2024
4. Human dendritic cell maturation induced by amorphous silica nanoparticles is Syk-dependent and triggered by lipid raft aggregation;Particle and Fibre Toxicology;2023-04-19
5. The energetic and physical concept of gold nanorod-dependent fluorescence in cancer treatment and development of new photonic compounds|review;RSC Advances;2023
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3