Effect of Calcination Temperature on Hydrogen Production via Ethanol Dry Reforming Over Ni/Al2O3 Catalyst

Author:

Samsudeen Kasim,Ahmed Al fatesh,Yahya Mohammad,Ahmed Aidid,Anis Fakeeha

Abstract

Ni/Al2O3 catalysts were prepared by the wet-impregnation method and calcined at different temperatures (500°C, 600°C and 700°C) to obtain NiAl-1, NiAl-2 and NiAl-3 respectively. NiAl-1, NiAl-2, NiAl-3 represent catalysts calcined at 500°C, 600°C and 700°C respectively. The catalysts were characterized using different techniques, XRD, BET and TGA. XRD results revealed the presence of NiO phase on all the catalysts during calcination, however, the presence of spinel, NiAl2O4, was more pronounced on the catalyst calcined at 600°C (i.e. NiAl-2), indicating the existence of strong metal-support interaction. BET results showed that NiAl-1 has the highest surface area of about 190cm2/g.  All the catalysts were tested for ethanol dry reforming in a tubular stainless steel fixed-bed reactor at 700°C and CO2/ethanol ratio of 3 under atmospheric pressure and were evaluated in terms of reactants conversion and selectivity of H2 to see the effect of the different calcination temperatures on the catalysts’ activities. Ethanol conversion was 100% for all the three catalysts and NiAl-2 has the highest CO2 conversion with an average value of about 57%. The three catalysts have almost the same performance in terms of H2 selectivity. The presence of multi-walled carbon nanofibers (MWCNFs) were confirmed on all the catalysts as revealed by the TGA result. The catalyst calcined at 600°C (i.e. NiAl-2) displayed the best relative catalytic activity

Publisher

Research Plus Journals

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3