Bioalcohol Reforming: An Overview of the Recent Advances for the Enhancement of Catalyst Stability

Author:

Palma VincenzoORCID,Ruocco ConcettaORCID,Cortese Marta,Martino MarcoORCID

Abstract

The growing demand for energy production highlights the shortage of traditional resources and the related environmental issues. The adoption of bioalcohols (i.e., alcohols produced from biomass or biological routes) is progressively becoming an interesting approach that is used to restrict the consumption of fossil fuels. Bioethanol, biomethanol, bioglycerol, and other bioalcohols (propanol and butanol) represent attractive feedstocks for catalytic reforming and production of hydrogen, which is considered the fuel of the future. Different processes are already available, including steam reforming, oxidative reforming, dry reforming, and aqueous-phase reforming. Achieving the desired hydrogen selectivity is one of the main challenges, due to the occurrence of side reactions that cause coke formation and catalyst deactivation. The aims of this review are related to the critical identification of the formation of carbon roots and the deactivation of catalysts in bioalcohol reforming reactions. Furthermore, attention is focused on the strategies used to improve the durability and stability of the catalysts, with particular attention paid to the innovative formulations developed over the last 5 years.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3