Hydrogen Production by Steam Reforming of Ethanol and Dry Reforming of Methane with CO2 on Ni/Vermiculite: Stability Improvement via Acid or Base Treatment of the Support

Author:

Mahir Hanane12,Benzaouak Abdellah12ORCID,Mesrar Farah1,El Hamidi Adnane2ORCID,Kacimi Mohamed1,Consentino Luca3ORCID,Liotta Leonarda Francesca3ORCID

Affiliation:

1. Laboratory of Nanomaterials, Nanotechnologies and Environment, Physical-Chemistry of Materials, Catalysis and Environment Unity, Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP:1014, Rabat 10000, Morocco

2. Laboratory of Spectroscopy, Molecular Modelling, Materials, Nanomaterials, Water and Environment, Environmental Materials Team, ENSAM, Mohammed V University in Rabat, B.P. 6207 Avenue des Forces Armées Royales, Rabat 10100, Morocco

3. Istituto per lo Studio dei Materiali Nanostrutturati (ISMN)-CNR, Via Ugo La Malfa, 153, 90146 Palermo, Italy

Abstract

In this study, vermiculite was explored as a support material for nickel catalysts in two key processes in syngas production: dry reforming of methane with CO2 and steam reforming of ethanol. The vermiculite underwent acid or base treatment, followed by the preparation of Ni catalysts through incipient wetness impregnation. Characterization was conducted using various techniques, including X-ray diffraction (XRD), SEM–EDS, FTIR, and temperature-programmed reduction (H2-TPR). TG-TD analyses were performed to assess the formation of carbon deposits on spent catalysts. The Ni-based catalysts were used in reaction tests without a reduction pre-treatment. Initially, raw vermiculite-supported nickel showed limited catalytic activity in the dry reforming of methane. After acid (Ni/VTA) or base (Ni/VTB) treatment, vermiculite proved to be an effective support for nickel catalysts that displayed outstanding performance, achieving high methane conversion and hydrogen yield. The acidic treatment improved the reduction of nickel species and reduced carbon deposition, outperforming the Ni over alkali treated support. The prepared catalysts were also evaluated in ethanol steam reforming under various conditions including temperature, water/ethanol ratio, and space velocity, with acid-treated catalysts confirming the best performance.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3