Operational failure assessment of Remotely Operated Vehicle (ROV) in harsh offshore environments

Author:

Nitonye Samson1,Adumene Sidum2,Orji Charles Ugochukwu1,Effiong Udo Anietie3

Affiliation:

1. Department of Marine Engineering, Rivers State University, Nkpolu-Oroworukwo Port Harcourt, Nigeria

2. Faculty of Engineering & Applied Science, Memorial University of Newfoundland, St. John’s NL, Canada

3. Department of Marine Engineering and Naval Architecture, Akwa Ibom State University, Uyo, Nigeria

Abstract

For an effective integrity assessment of marine robotic in offshore environments, the elements’ failure characteristics need to be understood. A structured probabilistic methodology is proposed for the operational failure assessment (OFA) characteristics of ROV. The first step is to assess the likely failure mode of the ROV system and its support systems. This captures the interaction and failure induced events during operation. The identified potential failure modes are further developed into logical connectivity based on the cause-effect relationship. The logical framework is modeled using the fault tree analysis technique to predict the ROV operational failure probability in an uncertain harsh environment. The fault tree analysis captured the logical relationship between the primary, intermediate, and top events probability. The importance measure criteria were adopted to identify the most probable events, links, and their importance on the failure propagation. The model was demonstrated with an ROV for deep arctic water subsea operations. The result identified the control system, communication linkages, human factor, among others, as most critical in the ROV operational failure. The methodology’s application provides core information on the Mean time between failure (MTBF) of the ROV system that could aid integrity management and provides a guide on early remedial action against total failure.

Publisher

University of Rijeka, Faculty of Maritime Studies

Subject

Engineering (miscellaneous),Social Sciences (miscellaneous),Geography, Planning and Development,Ocean Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3