Android Zararlı Yazılımlarının Derin Öğrenme ile Kategorilerine ve Ailelerine Göre Sınıflandırılması
Publisher
Teknik Bilimler Dergisi
Reference34 articles.
1. [1] Abuthawabeh, M. and Mahmoud, K. 2020. Enhanced Android Malware Detection and Family Classification, using Conversation-level Network Traffic Features. The International Arab Journal of Information Technology, 17, 4A, 607–614. 2. [2] Alshahrani, H., Mansourt, H., Thorn, S., Alshehri, A., Alzahrani, A. and Fu, H. 2018. DDefender: Android application threat detection using static and dynamic analysis. 2018 IEEE International Conference on Consumer Electronics (ICCE), 1–6. 3. [3] Alzaylaee, M.K., Yerima, S.Y. and Sezer, S. 2020. DL-Droid: Deep learning based android malware detection using real devices. Computers & Security, 89, 101663. 4. [4] Anagnostopoulos, M., Kambourakis, G. and Gritzalis, S. 2016. New facets of mobile botnet: architecture and evaluation. International Journal of Information Security, 15, 5, 455–473. 5. [5] Android Malware Dataset, 2021. https://www.unb.ca/cic/datasets/andmal2017.html (Erişim Tarihi: 10.4.2021).
|
|