Combustion Study of Different Transitional Metal Oxide based on AN/MgAl Composites Gas Generators

Author:

Kamunur K.,Jandosov J.M.,Аbdulkarimova R.G.,Hori K.,Yelemessova Zh.K.

Abstract

Ammonium nitrate (AN)-based composite gas generator have attracted a considerable amount of attention because of the clean burning nature of AN as an oxidizer. However, ammonium nitrate-based gas generator has several major problems, namely, poor ignitability, a low burning rate, low energy, and high hygroscopicity. The addition of different transitional metal oxides and MgAl mechanical alloyed proved to be effective in improving the burning characteristics of AN-based gas generator. In this research work, combustion study of different transition metal oxide based on AN/MgAl composites gas generators was studied. Gas generators were combusted at the pressure of 1 MPa, 3 MPa and 5 MPa in the combustion chamber and the burning rates were determined. It was stated that the addition of metal oxides into the composition of the gas generators improves ignition at low pressure and increases the burning rate. The use of the mechanical MgAl alloys as a fuel allowed the ignition of the gas generator at a lower temperature. The method of thermogravimetric/differential thermal analyzer (TG/DTA) was used to investigate the effect of metal oxides addition on the AN/MgAl-based gas generators thermal decomposition characteristics.

Publisher

Institute of Combustion Problems

Subject

Condensed Matter Physics,General Materials Science,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3