Author:
Matus Е.V.,Kerzhentsev M.A.,Nikitin A.P.,Sozinov S.A.,Ismagilov Z.R.
Abstract
For the creation of new highly active and stable catalysts for the complete processing of coal methane, different methods for designing catalytic systems are being applied, including the use of the effects of mutual strengthening of the action of metals and modifying the composition of the supports. Different chemical synthesis approaches were considered for obtaining supported Ni nanoparticles with controllable compositions and sizes. For the citrate sol-gel method, it was found that with an increase in the citric acid/metals molar ratio from 0 to 1, the textural characteristics (specific surface area: 76→100 m2/g) of Сe0.2Ni0.8O1.2/Al2O3 catalysts, dispersion (average particle size: 10→5 nm) and reducibility (temperature of maximum H2 consumption: 580→530 °C) of the Ni-containing species improved. For calcined in air at 500 °C catalysts it was shown that Ni2+ cations stabilized in NiO or in the Ce-Ni-O solid solution. The proportion of the latter was maximum at a citric acid/metal molar ratio equal to 0.25, which was chosen as the optimal value in the investigated range of 0.25–1.0. An increase in the calcination temperature from 500 to 900 °C contributes to the stabilization of Ni2+ in the Al-Ni-O solid solution, which leads to a slight deterioration in the textural properties of the samples and a significant difficulty in their reducibility. After reductive activation at 800 °C of Сe0.2Ni0.8O1.2/Al2O3 samples, catalytically active metal Nio nanoparticles of ~7 nm in size were formed for effective reforming of coal industry methane into synthesis gas.
Publisher
Institute of Combustion Problems
Subject
Condensed Matter Physics,General Materials Science,General Chemical Engineering,General Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献