Promising Directions in Chemical Processing of Methane from Coal Industry. Part 2. Development of Catalysts

Author:

Matus Е.V.,Kerzhentsev M.A.,Nikitin A.P.,Sozinov S.A.,Ismagilov Z.R.

Abstract

For the creation of new highly active and stable catalysts for the complete processing of coal methane, different methods for designing catalytic systems are being applied, including the use of the effects of mutual strengthening of the action of metals and modifying the composition of the supports. Different chemical synthesis approaches were considered for obtaining supported Ni nanoparticles with controllable compositions and sizes. For the citrate sol-gel method, it was found that with an increase in the citric acid/metals molar ratio from 0 to 1, the textural characteristics (specific surface area: 76→100 m2/g) of Сe0.2Ni0.8O1.2/Al2O3 catalysts, dispersion (average particle size: 10→5 nm) and reducibility (temperature of maximum H2 consumption: 580→530 °C) of the Ni-containing species improved. For calcined in air at 500 °C catalysts it was shown that Ni2+ cations stabilized in NiO or in the Ce-Ni-O solid solution. The proportion of the latter was maximum at a citric acid/metal molar ratio equal to 0.25, which was chosen as the optimal value in the investigated range of 0.25–1.0. An increase in the calcination temperature from 500 to 900 °C contributes to the stabilization of Ni2+ in the Al-Ni-O solid solution, which leads to a slight deterioration in the textural properties of the samples and a significant difficulty in their reducibility. After reductive activation at 800 °C of Сe0.2Ni0.8O1.2/Al2O3 samples, catalytically active metal Nio nanoparticles of ~7 nm in size were formed for effective reforming of coal industry methane into synthesis gas.

Publisher

Institute of Combustion Problems

Subject

Condensed Matter Physics,General Materials Science,General Chemical Engineering,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3