Promising Directions in Chemical Processing of Methane from Coal Industry. Part 3. Catalytic Tests

Author:

Matus Е.V.,Kerzhentsev M.A.,Nikitin A.P.,Sozinov S.A.,Ismagilov Z.R.

Abstract

For the processing of coal mine methane into hydrogen-containing gas, a catalytic process of methane tri-reforming (СH4 + O2 + CO2 + H2O) was proposed and its component reactions were studied – partial oxidation (СH4 + O2, POM), dry reforming (СH4 + CO2, DRM) and steam reforming (СH4 + H2O, SRM) of methane. Promoted nickel supported on aluminum oxide was used as a catalyst. Experiments were carried out by varying temperature (600–850 ºC), contact time (0.04–0.15 s), linear feed rate (40–240 cm/min) and composition of the reaction mixture (POM – СH4 : O2 : He = 1 : (0.5–0.7) : (3.3–3.4); DRM – СH4 : CO2 : He = 1 : (0.8–1.4) : (2.6–3.2); SRM – CH4 : H2O : He = 1 : (0.8–2.0) : (2.0–3.2)). Optimal reaction conditions were determined to ensure maximum efficiency of hydrogen production by reforming methane-containing mixtures of various compositions (temperature in the range of 800–850 ºC, contact time 0.15 s, linear feed rate 160 cm/min, molar ratio of CH4 : O2 = 1 : 0.5 for POM, CH4 : CO2 = 1 : 1 for DRM and CH4 : H2O = 1 : 1.1 for SRM). The degree of catalyst carbonization during the reactions was reduced (from 3 to 1.5% for POM, from 20.7 to 2.2% for DRM, and from 15.2 to 0.4% for SRM) due to an increase in the O/C molar ratio in the initial reaction mixture. Regulation of H2/CO molar ratio was achieved over a wide range (0.9–6.5). It has been shown that the hydrogen concentration in the resulting hydrogen-containing mixture is determined by the type of process and is equal to 30±5 vol.%.

Publisher

Institute of Combustion Problems

Reference29 articles.

1. (1). Statistical Review of World Energy 2023. URL

2. (2). Global thermal coal 10-year investment horizon outlook 2023. URL

3. (3). Global Methane Tracker 2023. IEA. URL

4. (4). Coal 2023. IEA. URL

5. (5). 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Vol. 2. Energy, Chapter 4: Fugitive Emissions. URL

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3