Atomic scale analyses of {\bb Z}-module defects in an NiZr alloy
-
Published:2018-10-04
Issue:6
Volume:74
Page:647-658
-
ISSN:2053-2733
-
Container-title:Acta Crystallographica Section A Foundations and Advances
-
language:
-
Short-container-title:Acta Cryst Sect A
Author:
Sirindil Abdullah,Kobold Raphael,Mompiou Frédéric,Lartigue-Korinek Sylvie,Perriere Loic,Patriarche Gilles,Quiquandon Marianne,Gratias Denis
Abstract
Some specific structures of intermetallic alloys, like approximants of quasicrystals, have their unit cells and most of their atoms located on a periodic fraction of the nodes of a unique {\bb Z}-module [a set of the irrational projections of the nodes of a (N > 3-dimensional) lattice]. Those hidden internal symmetries generate possible new kinds of defects like coherent twins, translation defects and so-called module dislocations that have already been discussed elsewhere [Quiquandon et al. (2016). Acta Cryst. A72, 55–61; Sirindil et al. (2017). Acta Cryst. A73, 427–437]. Presented here are electron microscopy observations of the orthorhombic phase NiZr – and its low-temperature monoclinic variant – which reveal the existence of such defects based on the underlying {\bb Z}-module generated by the five vertices of the regular pentagon. New high-resolution electron microscopy (HREM) and scanning transmission electron microscopy high-angle annular dark-field (STEM-HAADF) observations demonstrate the agreement between the geometrical description of the structure in five dimensions and the experimental observations of fivefold twins and translation defects.
Funder
Agence Nationale de la Recherche
Publisher
International Union of Crystallography (IUCr)
Subject
Inorganic Chemistry,Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science,Biochemistry,Structural Biology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Chiral spiral cyclic twins;Acta Crystallographica Section A Foundations and Advances;2022-01-01
2. Phase selection in hypercooled alloys;Journal of Alloys and Compounds;2020-09