Arithmetic proof of the multiplicity-weighted Euler characteristic for symmetrically arranged space-filling polyhedra

Author:

Naskręcki BartoszORCID,Dauter ZbigniewORCID,Jaskolski MariuszORCID

Abstract

The puzzling observation that the famous Euler's formula for three-dimensional polyhedra VE + F = 2 or Euler characteristic χ = VE + FI = 1 (where V, E, F are the numbers of the bounding vertices, edges and faces, respectively, and I = 1 counts the single solid itself) when applied to space-filling solids, such as crystallographic asymmetric units or Dirichlet domains, are modified in such a way that they sum up to a value one unit smaller (i.e. to 1 or 0, respectively) is herewith given general validity. The proof provided in this paper for the modified Euler characteristic, χm = V mE m + F mI m = 0, is divided into two parts. First, it is demonstrated for translational lattices by using a simple argument based on parity groups of integer-indexed elements of the lattice. Next, Whitehead's theorem, about the invariance of the Euler characteristic, is used to extend the argument from the unit cell to its asymmetric unit components.

Publisher

International Union of Crystallography (IUCr)

Subject

Inorganic Chemistry,Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science,Biochemistry,Structural Biology

Reference10 articles.

1. Aroyo, M. I. (2016). Editor. International Tables for Crystallography, Vol. A, 6th ed., Space-group Symmetry. Wiley: Chichester.

2. Coxeter, H. S. M. (1948). Regular Polytopes. London: Methuen.

3. Multiplicity-weighted Euler's formula for symmetrically arranged space-filling polyhedra

4. Euler, L. (1758). Novi Commun. Acad. Sci. Imp. Petropol. 4(1752-3), 109-140 [Opera Omnia (1), 26, 72-93].

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Euler characteristic as a basis for teaching topology concepts to crystallographers;Journal of Applied Crystallography;2022-02-01

2. A topological proof of the modified Euler characteristic based on the orbifold concept;Acta Crystallographica Section A Foundations and Advances;2021-06-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3