Abstract
The notion of the Euler characteristic of a polyhedron or tessellation has been the subject of in-depth investigations by many authors. Two previous papers worked to explain the phenomenon of the vanishing (or zeroing) of the modified Euler characteristic of a polyhedron that underlies a periodic tessellation of a space under a crystallographic space group. The present paper formally expresses this phenomenon as a theorem about the vanishing of the Euler characteristic of certain topological spaces called topological orbifolds. In this new approach, it is explained that the theorem in question follows from the fundamental properties of the orbifold Euler characteristic. As a side effect of these considerations, a theorem due to Coxeter about the vanishing Euler characteristic of a honeycomb tessellation is re-proved in a context which frees the calculations from the assumptions made by Coxeter in his proof. The abstract mathematical concepts are visualized with down-to-earth examples motivated by concrete situations illustrating wallpaper and 3D crystallographic space groups. In a way analogous to the application of the classic Euler equation to completely bounded solids, the formula proven in this paper is applicable to such important crystallographic objects as asymmetric units and Dirichlet domains.
Publisher
International Union of Crystallography (IUCr)
Subject
Inorganic Chemistry,Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science,Biochemistry,Structural Biology
Reference17 articles.
1. Caramello, F. C. Jr (2019). arXiv: 1909.08699.
2. Choi, S. (2012). Geometric Structures of 2-Orbifolds: Exploration of Discrete Symmetry. MSJ Memoirs, Vol. 27. Tokyo: Mathematical Society of Japan.
3. Conway, J. H., Burgiel, H. & Goodman-Strauss, C. (2008). The Symmetries of Things. Boca Raton: CRC Press.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献