A topological proof of the modified Euler characteristic based on the orbifold concept

Author:

Naskręcki BartoszORCID,Dauter ZbigniewORCID,Jaskolski MariuszORCID

Abstract

The notion of the Euler characteristic of a polyhedron or tessellation has been the subject of in-depth investigations by many authors. Two previous papers worked to explain the phenomenon of the vanishing (or zeroing) of the modified Euler characteristic of a polyhedron that underlies a periodic tessellation of a space under a crystallographic space group. The present paper formally expresses this phenomenon as a theorem about the vanishing of the Euler characteristic of certain topological spaces called topological orbifolds. In this new approach, it is explained that the theorem in question follows from the fundamental properties of the orbifold Euler characteristic. As a side effect of these considerations, a theorem due to Coxeter about the vanishing Euler characteristic of a honeycomb tessellation is re-proved in a context which frees the calculations from the assumptions made by Coxeter in his proof. The abstract mathematical concepts are visualized with down-to-earth examples motivated by concrete situations illustrating wallpaper and 3D crystallographic space groups. In a way analogous to the application of the classic Euler equation to completely bounded solids, the formula proven in this paper is applicable to such important crystallographic objects as asymmetric units and Dirichlet domains.

Publisher

International Union of Crystallography (IUCr)

Subject

Inorganic Chemistry,Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science,Biochemistry,Structural Biology

Reference17 articles.

1. Caramello, F. C. Jr (2019). arXiv: 1909.08699.

2. Choi, S. (2012). Geometric Structures of 2-Orbifolds: Exploration of Discrete Symmetry. MSJ Memoirs, Vol. 27. Tokyo: Mathematical Society of Japan.

3. Conway, J. H., Burgiel, H. & Goodman-Strauss, C. (2008). The Symmetries of Things. Boca Raton: CRC Press.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on AUV Data Collection Method Based on 3D Dirichlet in Underwater Sensor Networks;Proceedings of the 2023 7th International Conference on Electronic Information Technology and Computer Engineering;2023-10-20

2. Quasiperiodic metamaterials with broadband absorption: Tailoring electromagnetic wave by Penrose tiling;Composites Part B: Engineering;2022-03

3. The Euler characteristic as a basis for teaching topology concepts to crystallographers;Journal of Applied Crystallography;2022-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3