Abstract
An iterative transform method is proposed for solving the phase problem in protein crystallography. In each iteration, a weighted average electron-density map is constructed to define an estimated protein mask. Solvent flattening is then imposed through the hybrid input–output algorithm [Fienup (1982).Appl. Opt.21, 2758–2769]. Starting from random initial phases, after thousands of iterations the mask evolves into the correct shape and the phases converge to the correct values with an average error of 30–40° for high-resolution data for several protein crystals with high solvent content. With the use of non-crystallographic symmetry, the method could potentially be extended to phase protein crystals with less than 50% solvent fraction. The new phasing algorithm can supplement and enhance the traditional refinement tools.
Publisher
International Union of Crystallography (IUCr)
Subject
Inorganic Chemistry,Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science,Biochemistry,Structural Biology
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献