CrysFormer: Protein structure determination via Patterson maps, deep learning, and partial structure attention

Author:

Pan Tom1ORCID,Dun Chen1,Jin Shikai2ORCID,Miller Mitchell D.2ORCID,Kyrillidis Anastasios1ORCID,Phillips George N.23ORCID

Affiliation:

1. Department of Computer Science, Rice University 1 , Houston, Texas 77005, USA

2. Department of BioSciences, Rice University 2 , Houston, Texas 77005, USA

3. Department of Chemistry, Rice University 3 , Houston, Texas 77005, USA

Abstract

Determining the atomic-level structure of a protein has been a decades-long challenge. However, recent advances in transformers and related neural network architectures have enabled researchers to significantly improve solutions to this problem. These methods use large datasets of sequence information and corresponding known protein template structures, if available. Yet, such methods only focus on sequence information. Other available prior knowledge could also be utilized, such as constructs derived from x-ray crystallography experiments and the known structures of the most common conformations of amino acid residues, which we refer to as partial structures. To the best of our knowledge, we propose the first transformer-based model that directly utilizes experimental protein crystallographic data and partial structure information to calculate electron density maps of proteins. In particular, we use Patterson maps, which can be directly obtained from x-ray crystallography experimental data, thus bypassing the well-known crystallographic phase problem. We demonstrate that our method, CrysFormer, achieves precise predictions on two synthetic datasets of peptide fragments in crystalline forms, one with two residues per unit cell and the other with fifteen. These predictions can then be used to generate accurate atomic models using established crystallographic refinement programs.

Funder

Welch Foundation

National Science Foundation

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3