Abstract
Ambient-pressure trigonal phase α of selenourea SeC(NH2)2 is noncentrosymmetric, with high Z′ = 9. Under high pressure it undergoes several intriguing transformations, depending on the pressure-transmitting medium and the compression or recrystallization process. In glycerine or oil, α-SeC(NH2)2 transforms into phase β at 0.21 GPa; however in water, phase α initially increases its volume and can be compressed to 0.30 GPa due to the formation of α-SeC(NH2)2·xH2O. The single crystals of α-SeC(NH2)2 and of its partial hydrate α-SeC(NH2)2·xH2O are shattered by pressure-induced transitions. Single crystals of phase β-SeC(NH2)2 were in situ grown in a diamond-anvil cell and studied by X-ray diffraction. The monoclinic phase β is centrosymmetric, with Z′ = 2. It is stable to 3.20 GPa at least, but it cannot be recovered at ambient conditions due to strongly strained NH...Se hydrogen bonds. No hydrogen-bonding motifs present in the urea structures have been found in selenourea phases α and β.
Funder
Polish National Science Centre
Publisher
International Union of Crystallography (IUCr)
Subject
Materials Chemistry,Metals and Alloys,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献