Stochastic hydration of a high-nitrogen-content molecular compound recrystallized under pressure

Author:

Olejniczak AnnaORCID,Katrusiak AnnaORCID,Podsiadło MarcinORCID,Katrusiak AndrzejORCID

Abstract

Partial hydration of organic compounds can be achieved by high-pressure crystallization. This has been demonstrated for the high-nitrogen-content compound 6-chloro-1,2,3,4-tetrazolo[1,5-b]pyridazine (C4H2N5Cl), which becomes partly hydrated by isochoric crystallizations below 0.15 GPa. This hydrate, C4H2N5Cl·xH2O, is isostructural with the ambient-pressure phase α of C4H2N5Cl, but the crystal volume is somewhat larger than that of the anhydrate. At 0.20 GPa, the α-C4H2N5Cl anhydrate phase transforms abruptly into a new higher-symmetry phase, α′; the transformation is clearly visible due to a strong contraction of the crystals. The hydrate α-C4H2N5Cl·xH2O can also be isothermally compressed up to 0.30 GPa before transforming to the α′-C4H2N5Cl·xH2O phase. The isochoric recrystallization of C4H2N5Cl above 0.18 GPa yields a new anhydrous phase β, which, on releasing pressure, transforms back to the α phase below 0.15 GPa. The structural transition from the α to the β phase is destructive for the single crystal and involves a large volume drop and significant elongation of all the shortest intermolecular distances which are the CH...N and CH...Cl hydrogen bonds, as well as the N...N contacts. The α-to-α′ phase transition increases the crystal symmetry in the subgroup relation; however, there are no structural nor symmetry relations between phases α and β.

Publisher

International Union of Crystallography (IUCr)

Subject

Condensed Matter Physics,General Materials Science,Biochemistry,General Chemistry

Reference36 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3