Abstract
Two imidazolium hypodiphosphates, (C3H5N2)(H3P2O6) (I) and (C3H5N2)2(H2P2O6) (II), have been synthesized and structurally characterized. In both metal-free organic–inorganic hybrids (I) and (II), the hypodiphosphate mono- and dianions, (H3P2O6)− and (H2P2O6)2−, form hydrogen-bonded frameworks of different types, to which the organic cations are linked via N—H...O and C—H...O hydrogen bonds. The purity of the compounds was confirmed by powder X-ray diffraction. Differential scanning calorimetry of compound (I) revealed two structural phase transitions: continuous at 311.8 K [cooling/heating; from high-temperature phase (HTP) to room-temperature phase (RTP)] and a discontinuous one at 287.9/289.2 K [RTP → low-temperature phase (LTP)]. Compound (I) is characterized in a wide temperature range by single-crystal and powder X-ray diffraction methods. Crystal structures of high- and low-temperature phases are determined, which show orthorhombic (HTP, Pnna, No. 52) → monoclinic (LTP, P21/n11, No. 14, a-axis doubled) structural change on cooling with an intermediate incommensurately modulated phase (RTP). Dynamic properties of polycrystalline (I) were studied by means of dielectric spectroscopy. The dielectric behaviour is explained by the motion of imidazolium cations.
Publisher
International Union of Crystallography (IUCr)
Subject
Materials Chemistry,Metals and Alloys,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献