Influence of nanostructure formation on the crystal structure and morphology of epitaxially grown Gd2O3 on Si(001)

Author:

Gribisch Philipp,Schmidt JanORCID,Osten Hans-Jörg,Fissel AndreasORCID

Abstract

The influence of growth conditions on the layer orientation, domain structure and crystal structure of gadolinium oxide (Gd2O3) on silicon (001) has been investigated. Gd2O3 was grown at low (250°C) and high (850°C) temperatures with different oxygen partial pressure as well as a temperature ramp up during growth. At low temperature, the cubic bixbyite type of crystal structure with space group Ia{\bar 3} was grown at low oxygen partial pressure. The layers consist of two domains oriented orthogonal to each other. The epitaxial relationships for the two domains were found to be Gd2O3(110)[001]||Si(001)[110] and Gd2O3(110)[001]||Si(001)[{\bar 1}10], respectively. Applying additional oxygen during growth results in a change in crystal and domain structures of the grown layer into the monoclinic Sm2O3-type of structure with space group C2/m with (20\bar 1) orientation and mainly two orthogonal domains with the epitaxial relationship Gd2O3(20\bar 1)[010]||Si(100)〈110〉 and a smooth surface morphology. Some smaller areas have two intermediate azimuthal orientations between these variants, which results in a six-domain structure. The change in crystal structure can be understood based on the Gibbs–Thomson effect caused by the initial nucleation of nanometre-sized islands and its variation in diameter with a change in growth conditions. The crystal structure remains stable even against a temperature ramp up during growth. The layers grown at high temperature exhibit a nanowire-like surface morphology, where the nanowires have a cubic crystal structure and are aligned orthogonal to each other along the 〈110〉 in-plane directions. An increase in oxygen supply results in a reduced length and increased number of nanowires due to lower adatom mobility. The results clearly indicate that both kinetic and thermodynamic factors have a strong impact on the crystal structure, epitaxial relationship and morphology of the grown layers.

Publisher

International Union of Crystallography (IUCr)

Subject

Materials Chemistry,Metals and Alloys,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3