Abstract
The molecular and solid-state structure of azulene both raise fundamental questions. Therefore, the disordered crystal structure of azulene was re-refined with invariom non-spherical atomic scattering factors from new single-crystal X-ray diffraction data with a resolution of d = 0.45 Å. An unconstrained refinement results in a molecular geometry with C
s
symmetry. Refinements constrained to fulfill C
2v
symmetry, as observed in the gas phase and in high-level ab initio calculations, lead to similar figures of merit and residual densities as unconstrained ones. Such models are consistent with the structures from microwave spectroscopy and electron diffraction, albeit they are not the same. It is shown that for the disorder present in azulene, the invariom model describes valence electron density as successfully as it does for non-disordered structures, although the disorder still leads to high correlations mainly between positional parameters. Lattice-energy minimizations on a variety of ordered model structures using dispersion-corrected DFT calculations reveal that the local deviations from the average structure are small. Despite the molecular dipole moment there is no significant molecular ordering in any spatial direction. A superposition of all ordered model structures leads to a calculated average structure, which explains not only the experimental determined atomic coordinates, but also the apparently unusual experimental anisotropic displacement parameters.
Funder
Deutsche Forschungsgemeinschaft
Publisher
International Union of Crystallography (IUCr)
Subject
Materials Chemistry,Metals and Alloys,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献