Abstract
The engineering of supramolecular architectures needs accurate descriptions of the intermolecular interactions in crystal structures. Tetrathiafulvalene (TTF) is an effective building block used in the construction of promising functional materials. The parallel packing of the neutral TTF–TTF system was studied previously using the high-level quantum chemical method, advancing it as a valuable model system. The recently developed tight-binding quantum chemical method GFN2-xTB and local coupled-cluster method DLPNO-CCSD(T) were used to investigate the stacking interactions of TTF and selected derivatives deposited in the Cambridge Structural Database. Using the interaction energy of the TTF–TTF dimer calculated at the CCSD(T)/CBS level as the reference, the accuracies of the two methods are investigated. The energy decomposition analysis within the DLPNO-CCSD(T) framework reveals the importance of dispersion interaction in the TTF-related stacking systems. The dispersion interaction density plot vividly shows the magnitude and distribution of the dispersion interaction, providing a revealing insight into the stacking interactions in crystal structures. The results show that the GFN2-xTB and DLPNO-CCSD(T) methods could achieve accuracy at an affordable computational cost, which would be valuable in understanding the nature of parallel stacking in supramolecular systems.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shandong Province
Key Science and Technology Project in Institutions of Higher Education of Shandong Province
Shandong University of Technology Ph.D. Startup Foundation
Publisher
International Union of Crystallography (IUCr)
Subject
Materials Chemistry,Metals and Alloys,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献