Performance of photoelectron spin polarimeters with continuous and pulsed sources: from storage rings to free electron lasers

Author:

Pincelli T.,Grasselli F.,Petrov V. N.,Torelli P.,Rossi G.

Abstract

In this work the experimental uncertainties concerning electron spin polarization (SP) under various realistic measurement conditions are theoretically derived. The accuracy of the evaluation of the SP of the photoelectron current is analysed as a function of the detector parameters and specifications, as well as of the characteristics of the photoexcitation sources. In particular, the different behaviour of single counter or twin counter detectors when the intensity fluctuations of the source are considered have been addressed, leading to a new definition of the SP detector performance. The widely used parameter called the figure of merit is shown to be inadequate for describing the efficiency of SP polarimeters, especially when they are operated with time-structured excitation sources such as free-electron lasers. Numerical simulations have been performed and yield strong implications in the choice of the detecting instruments in spin-polarization experiments, that are constrained in a limited measurement time. Our results are therefore applied to the characteristics of a wide set of state-of-the-art spectroscopy facilities all over the world, and an efficiency diagram for SP experiments is derived. These results also define new mathematical instruments for handling the correct statistics of SP measurements in the presence of source intensity fluctuations.

Publisher

International Union of Crystallography (IUCr)

Subject

Instrumentation,Nuclear and High Energy Physics,Radiation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Time-, spin-, and angle-resolved photoemission spectroscopy with a 1-MHz 10.7-eV pulse laser;Review of Scientific Instruments;2023-08-01

2. Improvement of Mott spin polarimeters: An overlooked redundancy;Review of Scientific Instruments;2020-03-01

3. Recent trends in spin-resolved photoelectron spectroscopy;Journal of Physics: Condensed Matter;2017-11-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3