Abstract
In deep X-ray lithography (DXRL), synchrotron radiation is applied to pattern polymer microstructures. At the Synchrotron Laboratory for Micro and Nano Devices (SyLMAND), Canadian Light Source, a chromium-coated grazing-incidence X-ray double-mirror system is applied as a tunable low-pass filter. In a systematic study, the surface conditions of the two mirrors are analyzed to determine the mirror reflectivity for DXRL process optimization, without the need for spectral analysis or surface probing: PMMA resist foils were homogeneously exposed and developed to determine development rates for mirror angles between 6 mrad and 12 mrad as well as for white light in the absence of the mirrors. Development rates cover almost five orders of magnitude for nominal exposure dose (deposited energy per volume) values of 1 kJ cm−3to 6 kJ cm−3. The rates vary from case to case, indicating that the actual mirror reflectivity deviates from that of clean chromium assumed for the experiments. Fitting the mirror-based development rates to the white-light case as a reference, reflectivity correction factors are identified, and verified by experimental and numerical results of beam calorimetry. The correction factors are related to possible combinations of a varied chromium density, chromium oxidation and a carbon contamination layer. The best fit for all angles is obtained assuming 7.19 g cm−3nominal chromium density, 0.5 nm roughness for all involved layers, and an oxide layer thickness of 25 nm with a carbon top coat of 50 nm to 100 nm. A simulation tool for DXRL exposure parameters was developed to verify that the development rates for all cases do coincide within a small error margin (achieving a reduction of the observed errors by more than two orders of magnitude) if the identified mirror surface conditions are considered when calculating the exposure dose.
Publisher
International Union of Crystallography (IUCr)
Subject
Instrumentation,Nuclear and High Energy Physics,Radiation
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献