A coherent harmonic generation method for producing femtosecond coherent radiation in a laser plasma accelerator based light source

Author:

Liu WeihangORCID,Feng Chao,Jiao YiORCID,Wang Sheng

Abstract

The electron beam generated in laser plasma accelerators (LPAs) has two main initial weaknesses – a large beam divergence (up to a few milliradians) and a few percent level energy spread. They reduce the beam brightness and worsen the coherence of the LPA-based light source. To achieve fully coherent radiation, several methods have been proposed for generating strong microbunching on LPA beams. In these methods, a seed laser is used to induce an angular modulation into the electron beam, and the angular modulation is converted into a strong density modulation through a beamline with nonzero longitudinal position and transverse angle coupling. In this paper, an alternative method to generate microbunching into the LPA beam by using a seed laser that induces an energy modulation and transverse–longitudinal coupling beamlines that convert the energy modulation into strong density modulation is proposed. Compared with the angular modulation methods, the proposed method can use more than one order of magnitude lower seed laser power to achieve similar radiation performance. Simulations show that with the proposed method a coherent pulse of a few microjoules pulse energy and femtosecond duration can be generated with a typical LPA beam.

Funder

National Key Research and Development Program of China

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Bureau of Frontier Sciences and Education, Chinese Academy of Sciences

National Natural Science Foundation of China

Publisher

International Union of Crystallography (IUCr)

Subject

Instrumentation,Nuclear and High Energy Physics,Radiation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3