Abstract
Tofu is a toolkit for processing large amounts of images and for tomographic reconstruction. Complex image processing tasks are organized as workflows of individual processing steps. The toolkit is able to reconstruct parallel and cone beam as well as tomographic and laminographic geometries. Many pre- and post-processing algorithms needed for high-quality 3D reconstruction are available, e.g. phase retrieval, ring removal and de-noising. Tofu is optimized for stand-alone GPU workstations on which it achieves reconstruction speed comparable with costly CPU clusters. It automatically utilizes all GPUs in the system and generates 3D reconstruction code with minimal number of instructions given the input geometry (parallel/cone beam, tomography/laminography), hence yielding optimal run-time performance. In order to improve accessibility for researchers with no previous knowledge of programming, tofu contains graphical user interfaces for both optimization of 3D reconstruction parameters and batch processing of data with pre-configured workflows for typical computed tomography reconstruction. The toolkit is open source and extensive documentation is available for both end-users and developers. Thanks to the mentioned features, tofu is suitable for both expert users with specialized image processing needs (e.g. when dealing with data from custom-built computed tomography scanners) and for application-specific end-users who just need to reconstruct their data on off-the-shelf hardware.
Publisher
International Union of Crystallography (IUCr)
Subject
Instrumentation,Nuclear and High Energy Physics,Radiation
Reference32 articles.
1. Fast and flexible X-ray tomography using the ASTRA toolbox
2. A high-throughput system for high-quality tomographic reconstruction of large datasets at Diamond Light Source
3. SYRMEP Tomo Project: a graphical user interface for customizing CT reconstruction workflows
4. Buades, A., Collect, B. & Morel, J.-M. (2005). 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), 20-26 June 2005, San Diego, CA, USA, Vol. 2, pp. 60-65. IEEE.
5. Ring artifact suppression in X-ray computed tomography using a simple, pixel-wise response correction
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献