High-throughput synchrotron X-ray diffraction for combinatorial phase mapping

Author:

Gregoire J. M.,Van Campen D. G.,Miller C. E.,Jones R. J. R.,Suram S. K.,Mehta A.

Abstract

Discovery of new materials drives the deployment of new technologies. Complex technological requirements demand precisely tailored material functionalities, and materials scientists are driven to search for these new materials in compositionally complex and often non-equilibrium spaces containing three, four or more elements. The phase behavior of these high-order composition spaces is mostly unknown and unexplored. High-throughput methods can offer strategies for efficiently searching complex and multi-dimensional material genomes for these much needed new materials and can also suggest a processing pathway for synthesizing them. However, high-throughput structural characterization is still relatively under-developed for rapid material discovery. Here, a synchrotron X-ray diffraction and fluorescence experiment for rapid measurement of both X-ray powder patterns and compositions for an array of samples in a material library is presented. The experiment is capable of measuring more than 5000 samples per day, as demonstrated by the acquisition of high-quality powder patterns in a bismuth–vanadium–iron oxide composition library. A detailed discussion of the scattering geometry and its ability to be tailored for different material systems is provided, with specific attention given to the characterization of fiber textured thin films. The described prototype facility is capable of meeting the structural characterization needs for the first generation of high-throughput material genomic searches.

Publisher

International Union of Crystallography (IUCr)

Subject

Instrumentation,Nuclear and High Energy Physics,Radiation

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3